Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
J Ambient Intell Humaniz Comput ; : 1-23, 2022 Oct 01.
Article in English | MEDLINE | ID: covidwho-20234455

ABSTRACT

Millions of people use public transport systems daily, hence their interest for the epidemiology of respiratory infectious diseases, both from a scientific and a health control point of view. This article presents a methodology for obtaining epidemiological information on these types of diseases in the context of a public road transport system. This epidemiological information is based on an estimation of interactions with risk of infection between users of the public transport system. The methodology is novel in its aim since, to the best of our knowledge, there is no previous study in the context of epidemiology and public transport systems that addresses this challenge. The information is obtained by mining the data generated from trips made by transport users who use contactless cards as a means of payment. Data mining therefore underpins the methodology. One achievement of the methodology is that it is a comprehensive approach, since, starting from a formalisation of the problem based on epidemiological concepts and the transport activity itself, all the necessary steps to obtain the required epidemiological knowledge are described and implemented. This includes the estimation of data that are generally unknown in the context of public transport systems, but that are required to generate the desired results. The outcome is useful epidemiological data based on a complete and reliable description of all estimated potentially infectious interactions between users of the transport system. The methodology can be implemented using a variety of initial specifications: epidemiological, temporal, geographic, inter alia. Another feature of the methodology is that with the information it provides, epidemiological studies can be carried out involving a large number of people, producing large samples of interactions obtained over long periods of time, thereby making it possible to carry out comparative studies. Moreover, a real use case is described, in which the methodology is applied to a road transport system that annually moves around 20 million passengers, in a period that predates the COVID-19 pandemic. The results have made it possible to identify the group of users most exposed to infection, although they are not the largest group. Finally, it is estimated that the application of a seat allocation strategy that minimises the risk of infection reduces the risk by 50%.

2.
BMC Infect Dis ; 22(1): 743, 2022 Sep 20.
Article in English | MEDLINE | ID: covidwho-2038667

ABSTRACT

BACKGROUND: Lockdowns imposed throughout the US to control the COVID-19 pandemic led to a decline in all routine immunizations rates, including the MMR (measles, mumps, rubella) vaccine. It is feared that post-lockdown, these reduced MMR rates will lead to a resurgence of measles. METHODS: To measure the potential impact of reduced MMR vaccination rates on measles outbreak, this research examines several counterfactual scenarios in pre-COVID-19 and post-COVID-19 era. An agent-based modeling framework is used to simulate the spread of measles on a synthetic yet realistic social network of Virginia. The change in vulnerability of various communities to measles due to reduced MMR rate is analyzed. RESULTS: Results show that a decrease in vaccination rate [Formula: see text] has a highly non-linear effect on the number of measles cases and this effect grows exponentially beyond a threshold [Formula: see text]. At low vaccination rates, faster isolation of cases and higher compliance to home-isolation are not enough to control the outbreak. The overall impact on urban and rural counties is proportional to their population size but the younger children, African Americans and American Indians are disproportionately infected and hence are more vulnerable to the reduction in the vaccination rate. CONCLUSIONS: At low vaccination rates, broader interventions are needed to control the outbreak. Identifying the cause of the decline in vaccination rates (e.g., low income) can help design targeted interventions which can dampen the disproportional impact on more vulnerable populations and reduce disparities in health. Per capita burden of the potential measles resurgence is equivalent in the rural and the urban communities and hence proportionally equitable public health resources should be allocated to rural regions.


Subject(s)
COVID-19 , Measles , COVID-19/epidemiology , Child , Communicable Disease Control , Humans , Measles/epidemiology , Measles/prevention & control , Measles-Mumps-Rubella Vaccine , Pandemics , United States/epidemiology
3.
BMC Public Health ; 22(1): 961, 2022 05 13.
Article in English | MEDLINE | ID: covidwho-1846814

ABSTRACT

BACKGROUND: During the COVID-19 pandemic, the slope of the epidemic curve in Mexico City has been quite unstable. Changes in human activity led to changes in epidemic activity, hampering attempts at economic and general reactivation of the city. METHODS: We have predicted that where a fraction of the population above a certain threshold returns to the public space, the negative tendency of the epidemic curve will revert. Such predictions were based on modeling the reactivation of economic activity after lockdown using an epidemiological model resting upon a contact network of Mexico City derived from mobile device co-localization. We modeled scenarios with different proportions of the population returning to normalcy. Null models were built using the Jornada Nacional de Sana Distancia (the Mexican model of elective lockdown). There was a mobility reduction of 75% and no mandatory mobility restrictions. RESULTS: We found that a new peak of cases in the epidemic curve was very likely for scenarios in which more than 5% of the population rejoined the public space. The return of more than 50% of the population synchronously will unleash a magnitude similar to the one predicted with no mitigation strategies. By evaluating the tendencies of the epidemic dynamics, the number of new cases registered, hospitalizations, and recent deaths, we consider that reactivation following only elective measures may not be optimal under this scenario. CONCLUSIONS: Given the need to resume economic activities, we suggest alternative measures that minimize unnecessary contacts among people returning to the public space. We evaluated that "encapsulating" reactivated workers (that is, using measures to reduce the number of contacts beyond their influential community in the contact network) may allow reactivation of a more significant fraction of the population without compromising the desired tendency in the epidemic curve.


Subject(s)
COVID-19 , COVID-19/epidemiology , Communicable Disease Control , Humans , Mexico/epidemiology , Pandemics , SARS-CoV-2
4.
Prev Med Rep ; 27: 101787, 2022 Jun.
Article in English | MEDLINE | ID: covidwho-1773702

ABSTRACT

When vaccines are limited, prior research has suggested it is most protective to distribute vaccines to the most central individuals - those who are most likely to spread the disease. But surveying the population's social network is a costly and time-consuming endeavour, often not completed before vaccination must begin. This paper validates a local targeting method for distributing vaccines. That is, ask randomly chosen individuals to nominate for vaccination the person they are in contact with who has the most disease-spreading contacts. Even better, ask that person to nominate the next person for vaccination, and so on. To validate this approach, we simulate the spread of COVID-19 along empirical contact networks collected in two high schools, in the United States and France, pre-COVID. These weighted networks are built by recording whenever students are in close spatial proximity and facing one another. We show here that nomination of most popular contacts performs significantly better than random vaccination, and on par with strategies which assume a full survey of the population. These results are robust over a range of realistic disease-spread parameters, as well as a larger synthetic contact network of 3000 individuals.

SELECTION OF CITATIONS
SEARCH DETAIL